Theory with ex ( linear transformation-kernel,image,rank )

 Kernel of Linear Transformation:

Let T: V U be a linear Transformation then

Kernel of Linear Transformation T is denoted by Ker T and defined as

Ker T= { v € V / T(v)=0}

Note:1) 

Let T: V − − −→ U be a linear Transformation then Kernel of Linear Transformation is subspace of the vector space V and dimensions of subspace ker T is called as the nullity of T.

Image of Linear Transformation:

Let T: V − − −→ U be a linear Transformation then Image of Linear Transformation T is denoted by Im T and defined as

Im T = { u ∈ U / there exist v ∈ V for which T(v)=u }

Note 2)

 Let T: V − − −→ U be a linear Transformation then Im T is

subspace of a vector space U.


Rank of a Linear Transformation:
Rank of a Linear Transformation T is defined to be dimensions of its Image And
rank(T) = dim(Im T )

Rank nullity Theorem:

Let T: V − − −→ U be a linear Transformation then
dim V = rank(T) + nullity(T)
dim V= dim Im T + Dim Ker T
Note: 
For a Linear Transformation TX= AX where A is matrix of Transformation
then
Column space of A = Image of T
Basis of Im T = Basis of Column Space of the matrix A.


Example : Verify Rank nullity theorem for following Linear Transformations:

1) T : R^3 − − −→ R^3 defined as T |x|         |0|
                                                            |y|   =   |x|
                                                            |z|         |0|

T |x|       |0|
    |y|=    |x|
    |z|      |0|

= |0x + 0y + 0z|      =| 0 0 0|     |x|
   |x + 0y + 0z   |        |1 0 0 |     |y|
   |0x + 0y + 0z|          |0 0 0 |    |z|
     

T(X)= AX
Dim V=3
Rank T= Dim.Im T

Im T = { u ∈ U / there exist v ∈ V for which T(v)=u }
Im T= { u ∈ U / there exist |x|                                  |x|
                                            |y|  ∈ R^3  for which T(|y|)=u }
                                            |z|                                   |z|


Im T= { u ∈ U / |0|  =u }
                           |x| 
                            |0|


Im T = { |0|  /x  is real number}
               |x| 
               |0|
  

Dim Im T = 1 = rank of T
KerT = {  |x|  /  x,y,z.are real and T    |x|         |0|   }
                 |y|                                       |y|   =    |0|
                 | z|                                       |z|         |0|

                     
But    T  |x|         |0|
              |y|   =   |x|
              |z|         |0|


KerT = {     |x|    / x,y,z.are real and    |0|         |0|   }
                    |y|                                     |x|   =    |0|
                    |z|                                      |0|         |0|
                          
0x+0y+0z=0
X+0y+0z=0
0x+0y+0z=0

|0 0 0|   |x|      |0|
|1 0 0 |  |y|  =  |0|
|0 0 0 |   |z|      |0|

Augmented matrix is [A: 0] = [0 0 0 ∶0]  interchanging 1st and 2nd equation
                                                 [1 0 0 ∶0]
                                                 [ 0 0 0 :0]

[A: 0] = [1 0 0 ∶0]     which is echelon form and re writing equations  x=0

             [  0 0 0 ∶0]

              [ 0 0 0: 0]

Two free parameters non trival solutions

Let y= t1 and z=t2

KerT = {  [0  ]  / t1 and t2 real numbers }

                0[t1]

                0[t2]

Dim V=3 , Dim of Ker T =2 , Dim Of IM T = 1

Dim V= Dim Im T +Dim KerT

3= 1+2

dim V = rank(T) + nullity(T)

Post a Comment

Previous Post Next Post