Second-Order Partial Derivatives-Formulas with some examples

  •  Second-Order Partial Derivatives


By differentiating a function z = f(x, y) twice , we get its second-order derivatives.

These derivatives are usually denoted by:


Examples :

1. If f( x, y) = x cos y + y e^, then find

∂f/∂x , ∂f/∂y , ∂^2f /∂x^∂^2f/∂y^2 ∂^2f/∂x∂y , ∂^2f/∂y∂x.


Solution:

∂f/∂x ∂ / ∂x (x cos y + y e^x) = cos y + y e^x

∂f/∂y ∂/∂y (x cos y + y e^x) = −x sin y + e^x

∂^2f/∂x^∂/∂x(∂f/∂x) ∂ /∂x (cos y + y e^x) = 0 + y e^x = y e^x

∂^2f/∂y^∂/∂y (∂f/∂y) ∂/∂y( −x sin y + e^x )= −x cos y + 0 = −x cos y

∂^2f/∂x∂y ∂/∂x(∂f/∂y) ∂/∂x (−x sin y + e^x) = − sin y + e^x

∂^2f/∂y∂x ∂/∂y(∂f/∂x) ∂/∂y (cos y + y e^x) = − sin y + e^x


2.If u = log x^2 + y^2 verify ∂^2u/∂x∂y ∂^2u/ ∂y∂x

Solution:

∂u/∂x2x/x^2 + y^2

∂u/∂y 2y/x^2 + y^2

∂^2u/∂x∂y ∂/∂x(∂u/∂y) ∂/∂x(2y/x^2 + y^2)

=(x^2+y^2∂/∂x (2y) − (2y) ∂/∂x x^2 + y^2

-------------------------------------------------------

(x^2 + y^2)^2

=(x^2+y^2)(0) − 2y(2x)

--------------------------------

(x^2 + y^2)^

= −4xy/(x^2 + y^2)^2

∂^2u/∂y∂x ∂/∂y(∂u/∂x) ∂/∂y(2x/x^2 + y^)2

(x^2+y^2∂/∂y(2x) − 2x∂/∂y(x^2 + y^2)

-------------------------------------------------------

(x^2 + y^2)^2

=(x^2+y^2)(0) − 2x 2y

-----------------------------

(x^2 + y^2)^2

= − 4xy (x^2 + y^2)^2


Ex.3)









Post a Comment

Previous Post Next Post